A Non-Reference Image Denoising Method for Infrared Thermal Image Based on Enhanced Dual-Tree Complex Wavelet Optimized by Fruit Fly Algorithm and Bilateral Filter
نویسندگان
چکیده
To eliminate the noise of infrared thermal image without reference and noise model, an improved dual-tree complex wavelet transform (DTCWT), optimized by an improved fruit-fly optimization algorithm (IFOA) and bilateral filter (BF), is proposed in this paper. Firstly, the noisy image is transformed by DTCWT, and the noise variance threshold is optimized by the IFOA, which is enhanced through a fly step range with inertia weight. Then, the denoised image will be re-processed using bilateral filter to improve the denoising performance and enhance the edge information. In the experiment, the proposed method is applied to eliminate both addictive noise and multiplicative noise, and the denoising results are compared with other representative methods, such as DTCWT, block-matching and 3D filtering (BM3D), median filter, wiener filter, wavelet decomposition filter (WDF) and bilateral filter. Moreover, the proposed method is applied as pre-processing utilization for infrared thermal images in a coal mining working face.
منابع مشابه
An Adaptive Hierarchical Method Based on Wavelet and Adaptive Filtering for MRI Denoising
MRI is one of the most powerful techniques to study the internal structure of the body. MRI image quality is affected by various noises. Noises in MRI are usually thermal and mainly due to the motion of charged particles in the coil. Noise in MRI images also cause a limitation in the study of visual images as well as computer analysis of the images. In this paper, first, it is proved that proba...
متن کاملA Real Time Adaptive Multiresolution Adaptive Wiener Filter Based On Adaptive Neuro-Fuzzy Inference System And Fuzzy evaluation
In this paper, a real-time denoising filter based on modelling of stable hybrid models is presented. Thehybrid models are composed of the shearlet filter and the adaptive Wiener filter in different forms.The optimization of various models is accomplished by the genetic algorithm. Next, regarding thesignificant relationship between Optimal models and input images, changing the structure of Optim...
متن کاملImage Denoising Using Dual-tree Complex Wavelet Transform and Wiener Filter with Modified Thresholding
This paper presents a new image denoising algorithm based on local variance estimation. In the process of denoising, the Wiener filter is used to remove the noise component of the dual-tree complex wavelet transform (DT-CWT) coefficients. The variances of noise-free coefficients are estimated by the DT-CWT coefficients transformed by modified thresholding. The tests show that the proposed metho...
متن کاملFusion of Thermal Infrared and Visible Images Based on Multi-scale Transform and Sparse Representation
Due to the differences between the visible and thermal infrared images, combination of these two types of images is essential for better understanding the characteristics of targets and the environment. Thermal infrared images have most importance to distinguish targets from the background based on the radiation differences, which work well in all-weather and day/night conditions also in land s...
متن کاملA New Shearlet Framework for Image Denoising
Traditional noise removal methods like Non-Local Means create spurious boundaries inside regular zones. Visushrink removes too many coefficients and yields recovered images that are overly smoothed. In Bayesshrink method, sharp features are preserved. However, PSNR (Peak Signal-to-Noise Ratio) is considerably low. BLS-GSM generates some discontinuous information during the course of denoising a...
متن کامل